- 3.0.2 Documentation
Extended Kalman Filter as Disturbance Observer

Here, we use an Extended Kalman Filter to observer an input-disturbance to a simple example system. We simulate a system, subjet to noise and a time-varying disturbance, add noise to the observations and then compute state and disturbance estimates using an EKF.

/**********************************************************************************************************************
This file is part of the Control Toolbox (https://github.com/ethz-adrl/control-toolbox), copyright by ETH Zurich.
Licensed under the BSD-2 license (see LICENSE file in main directory)
**********************************************************************************************************************/
#include "exampleDir.h"
// a damped oscillator has two states, position and velocity
const size_t state_dim = ct::core::SecondOrderSystem::STATE_DIM; // = 2
const size_t control_dim = ct::core::SecondOrderSystem::CONTROL_DIM; // = 1
const size_t output_dim = state_dim; // we measure the full state
const size_t dist_dim = control_dim; // we consider an input disturbance
class CustomController : public ct::core::Controller<state_dim, control_dim>
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
static const size_t state_dim = 2;
static const size_t control_dim = 1;
CustomController(const ct::core::ControlVector<control_dim>& uff_max, // feedforward control amplitude
const double& uff_frequency, // frequency of the feedforward control osciallation
const double& kp, // P gain
const double& kd, // D gain
const double& disturbance_max, // disturbance amplitude
const double& disturbance_frequency // frequency of the disturbance
)
: uff_max_(uff_max),
uff_frequency_(uff_frequency),
kp_(kp),
kd_(kd),
d_(disturbance_max),
d_freq_(disturbance_frequency)
{
}
CustomController* clone() const override { return new CustomController(*this); }
const double& t,
ct::core::ControlVector<control_dim>& controlAction) override
{
controlAction = uff_max_ * std::sin(t * uff_frequency_); // apply feedforward control
controlAction += getSimulatedDisturbance(t); // apply simulated disturbance
controlAction(0) += -kp_ * state(0) - kd_ * state(1); // add feedback control
}
ct::core::ControlVector<control_dim> getSimulatedDisturbance(const double& t)
{
dist_in(0) = d_ * std::cos(t * t * d_freq_);
return dist_in;
}
private:
double uff_frequency_; // frequency of feedforward oscillation
double kp_;
double kd_;
double d_;
double d_freq_;
};
int main(int argc, char** argv)
{
// file with weights and settings
std::string configFile = ct::optcon::exampleDir + "/kalmanDisturbanceFilterSettings.info";
double dt; // sampling time
int nSteps; // time horizon
ct::core::loadScalar(configFile, "experiment_settings.dt", dt);
ct::core::loadScalar(configFile, "experiment_settings.nSteps", nSteps);
// state vector (initial state)
ct::core::loadMatrix(configFile, "x0", x);
// create an oscillator with resonance-frequency w_n
double w_n;
ct::core::loadScalar(configFile, "experiment_settings.w_n", w_n);
std::shared_ptr<ct::core::SecondOrderSystem> oscillator(new ct::core::SecondOrderSystem(w_n));
// create our controller: a PD controller which also "simulates" a time-varying disturbance
double kp = 10.0;
double kd = 1.0;
double uff_frequency, disturbance_max, disturbance_freq;
ct::core::loadMatrix(configFile, "experiment_settings.uff_magnitude", uff_magnitude);
ct::core::loadScalar(configFile, "experiment_settings.uff_frequency", uff_frequency);
ct::core::loadScalar(configFile, "experiment_settings.disturbance_frequency", disturbance_freq);
ct::core::loadScalar(configFile, "experiment_settings.disturbance_max", disturbance_max);
std::shared_ptr<CustomController> disturbed_controller(
new CustomController(uff_magnitude, uff_frequency, kp, kd, disturbance_max, disturbance_freq));
// assign our controller to generate the disturbed data
oscillator->setController(disturbed_controller);
// create an integrator for "simulating" the measured data
ct::core::Integrator<state_dim> integrator(oscillator, ct::core::IntegrationType::EULERCT);
ct::core::StateVectorArray<state_dim> states; // recorded sim states
ct::core::ControlVectorArray<dist_dim> disturbance; // recorded disturbance
ct::core::tpl::TimeArray<double> times; // recorded times
// read process noise parameters from file
ct::core::loadMatrix(configFile, "process_noise.process_var", process_var);
// process noise (scaled with dt)
ct::core::GaussianNoise position_process_noise(0.0, dt * process_var(0, 0));
ct::core::GaussianNoise velocity_process_noise(0.0, dt * process_var(1, 1));
// simulate the disturbed system to generate data
states.push_back(x);
for (int i = 0; i < nSteps; i++)
{
// integrate system
integrator.integrate_n_steps(x, i * dt, 1, dt);
// log the disturbance (for plotting only)
disturbance.push_back(disturbed_controller->getSimulatedDisturbance(dt * i));
// add process noise
position_process_noise.noisify(x(0));
velocity_process_noise.noisify(x(1));
// log state and time
states.push_back(x);
times.push_back(i * dt);
}
// observation model of the system dynamics (the model we "assume" to be correct, without disturbance)
std::shared_ptr<ct::core::SecondOrderSystem> oscillator_obs(new ct::core::SecondOrderSystem(w_n));
// create the controller that we "assumed" we were using (no disturbance)
std::shared_ptr<CustomController> controller_nominal(
new CustomController(uff_magnitude, uff_frequency, kp, kd, 0.0, 0.0));
std::shared_ptr<ct::optcon::InputDisturbedSystem<state_dim, control_dim>> inputDisturbedSystem(
// Observation matrix for the state
C.setIdentity();
// Observation matrix for the disturbance (assuming the disturbance does not enter the output equation)
Cd.setZero();
// Total observation matrix, state and disturbance combined
Caug << C, Cd;
// Kalman filter weighting matrices Q, dFdv and R
ct::core::loadMatrix(configFile, "kalman_weights.Qaug", Qaug);
ct::core::loadMatrix(configFile, "kalman_weights.R", R);
dFdv.setIdentity();
// create a sensitivity approximator to obtain discrete-time dynamics matrices
std::shared_ptr<ct::core::SystemLinearizer<state_dim + dist_dim, control_dim>> linearizer(
std::shared_ptr<ct::core::SensitivityApproximation<state_dim + dist_dim, control_dim>> sensApprox(
// set up the system model
std::shared_ptr<ct::optcon::CTSystemModel<state_dim + dist_dim, control_dim>> sysModel(
new ct::optcon::CTSystemModel<state_dim + dist_dim, control_dim>(inputDisturbedSystem, sensApprox, dFdv));
// set up the measurement model
std::shared_ptr<ct::optcon::LinearMeasurementModel<output_dim, state_dim + dist_dim>> measModel(
// load measurement noise data from file
ct::core::loadMatrix(configFile, "measurement_noise.measurement_var", meas_var);
ct::core::GaussianNoise position_measurement_noise(0.0, meas_var(0, 0));
ct::core::GaussianNoise velocity_measurement_noise(0.0, meas_var(1, 1));
// generate initial state for the estimator (with noise, disturbance assumed to be zero at beginning)
x0aug << states[0], 0.0;
position_measurement_noise.noisify(x0aug(0));
velocity_measurement_noise.noisify(x0aug(1));
// data containers for logging data while estimating
ct::core::OutputVectorArray<output_dim> output_meas(states.size());
states_est[0] = x0aug;
output_meas[0] = states[0];
cov_est[0] = Qaug;
// set up Extended Kalman Filter
sysModel, measModel, Qaug, R, x0aug, Qaug);
// run the filter over the simulated data
for (size_t i = 1; i < states.size(); ++i)
{
// compute an observation
ct::core::OutputVector<output_dim> y = C * states[i] + Cd * disturbance[i - 1];
position_measurement_noise.noisify(y(0)); // Position noise.
velocity_measurement_noise.noisify(y(1)); // Velocity noise.
output_meas[i] = y;
// this is the control input that we would have "measured"
controller_nominal->computeControl(states_est[i - 1].template head<state_dim>(), dt * (i - 1), nominal_control);
// Kalman filter prediction step
ekf.predict(nominal_control, dt, dt * i);
// Kalman filter estimation step (state + disturbance)
states_est[i] = ekf.update(y, dt, dt * i);
cov_est[i] = ekf.getCovarianceMatrix();
}
// plot if plotting library built.
#ifdef PLOTTING_ENABLED
// some temporary containers for plotting
std::vector<double> time_plot;
std::vector<double> pos_est_plot, vel_est_plot, dist_est_plot;
std::vector<double> pos_plot, vel_plot, dist_plot;
std::vector<double> pos_meas_plot, vel_meas_plot;
std::vector<double> pos_var_plot_upper, pos_var_plot_lower, vel_var_plot_upper, vel_var_plot_lower,
dist_var_plot_upper, dist_var_plot_lower;
for (size_t i = 0; i < times.size(); i++)
{
time_plot.push_back(times[i]);
pos_plot.push_back(states[i](0));
pos_meas_plot.push_back(output_meas[i](0));
pos_est_plot.push_back(states_est[i](0));
pos_var_plot_upper.push_back(pos_est_plot[i] + cov_est[i](0, 0));
pos_var_plot_lower.push_back(pos_est_plot[i] - cov_est[i](0, 0));
vel_plot.push_back(states[i](1));
vel_meas_plot.push_back(output_meas[i](1));
vel_est_plot.push_back(states_est[i](1));
vel_var_plot_upper.push_back(vel_est_plot[i] + cov_est[i](1, 1));
vel_var_plot_lower.push_back(vel_est_plot[i] - cov_est[i](1, 1));
dist_plot.push_back(disturbance[i](0));
dist_est_plot.push_back(states_est[i](2));
dist_var_plot_upper.push_back(dist_est_plot[i] + cov_est[i](2, 2));
dist_var_plot_lower.push_back(dist_est_plot[i] - cov_est[i](2, 2));
}
// plot position
ct::core::plot::labelPlot("pos est", time_plot, pos_est_plot, "b");
ct::core::plot::labelPlot("pvar_u", time_plot, pos_var_plot_upper, "b:");
ct::core::plot::labelPlot("pvar_l", time_plot, pos_var_plot_lower, "b:");
ct::core::plot::labelPlot("ground truth", time_plot, pos_plot, "r");
ct::core::plot::labelPlot("pos meas", time_plot, pos_meas_plot, "kx--");
// plot velocity
ct::core::plot::labelPlot("vel est", time_plot, vel_est_plot, "b");
ct::core::plot::labelPlot("vvar_u", time_plot, vel_var_plot_upper, "b:");
ct::core::plot::labelPlot("vvar_l", time_plot, vel_var_plot_lower, "b:");
ct::core::plot::labelPlot("ground truth", time_plot, vel_plot, "r");
ct::core::plot::labelPlot("vel meas", time_plot, vel_meas_plot, "kx--");
ct::core::plot::ylabel("vel [m/sec]");
ct::core::plot::xlabel("time [sec]");
// plot disturbance
ct::core::plot::labelPlot("dist est", time_plot, dist_est_plot, "b");
ct::core::plot::labelPlot("dvar_u", time_plot, dist_var_plot_upper, "b:");
ct::core::plot::labelPlot("dvar_l", time_plot, dist_var_plot_lower, "b:");
ct::core::plot::labelPlot("ground truth", time_plot, dist_plot, "r");
ct::core::plot::ylabel("disturbance");
#else // print results to command line
for (size_t i = 0; i < times.size(); i++)
{
std::cout << std::fixed << std::setprecision(6) << "pos:\t" << states[i][0] << "\t pos est:\t"
<< states_est[i][0] << "\t dist:\t" << states_est[i][2] << std::endl
<< "vel: \t" << states[i][1] << "\t vel est:\t" << states_est[i][1] << std::endl
<< std::endl;
}
#endif
return 0;
}

You can run this example with the following command

rosrun ct_optcon ex_KalmanDisturbanceFiltering