- 3.0.1 core module.
gtest-internal.h
Go to the documentation of this file.
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // The Google C++ Testing and Mocking Framework (Google Test)
31 //
32 // This header file declares functions and macros used internally by
33 // Google Test. They are subject to change without notice.
34 
35 // GOOGLETEST_CM0001 DO NOT DELETE
36 
37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39 
41 
42 #if GTEST_OS_LINUX
43 # include <stdlib.h>
44 # include <sys/types.h>
45 # include <sys/wait.h>
46 # include <unistd.h>
47 #endif // GTEST_OS_LINUX
48 
49 #if GTEST_HAS_EXCEPTIONS
50 # include <stdexcept>
51 #endif
52 
53 #include <ctype.h>
54 #include <float.h>
55 #include <string.h>
56 #include <iomanip>
57 #include <limits>
58 #include <map>
59 #include <set>
60 #include <string>
61 #include <type_traits>
62 #include <vector>
63 
64 #include "gtest/gtest-message.h"
68 
69 // Due to C++ preprocessor weirdness, we need double indirection to
70 // concatenate two tokens when one of them is __LINE__. Writing
71 //
72 // foo ## __LINE__
73 //
74 // will result in the token foo__LINE__, instead of foo followed by
75 // the current line number. For more details, see
76 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
77 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
78 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
79 
80 // Stringifies its argument.
81 #define GTEST_STRINGIFY_(name) #name
82 
83 namespace proto2 { class Message; }
84 
85 namespace testing {
86 
87 // Forward declarations.
88 
89 class AssertionResult; // Result of an assertion.
90 class Message; // Represents a failure message.
91 class Test; // Represents a test.
92 class TestInfo; // Information about a test.
93 class TestPartResult; // Result of a test part.
94 class UnitTest; // A collection of test suites.
95 
96 template <typename T>
97 ::std::string PrintToString(const T& value);
98 
99 namespace internal {
100 
101 struct TraceInfo; // Information about a trace point.
102 class TestInfoImpl; // Opaque implementation of TestInfo
103 class UnitTestImpl; // Opaque implementation of UnitTest
104 
105 // The text used in failure messages to indicate the start of the
106 // stack trace.
107 GTEST_API_ extern const char kStackTraceMarker[];
108 
109 // An IgnoredValue object can be implicitly constructed from ANY value.
111  struct Sink {};
112  public:
113  // This constructor template allows any value to be implicitly
114  // converted to IgnoredValue. The object has no data member and
115  // doesn't try to remember anything about the argument. We
116  // deliberately omit the 'explicit' keyword in order to allow the
117  // conversion to be implicit.
118  // Disable the conversion if T already has a magical conversion operator.
119  // Otherwise we get ambiguity.
120  template <typename T,
122  int>::type = 0>
123  IgnoredValue(const T& /* ignored */) {} // NOLINT(runtime/explicit)
124 };
125 
126 // Appends the user-supplied message to the Google-Test-generated message.
127 GTEST_API_ std::string AppendUserMessage(
128  const std::string& gtest_msg, const Message& user_msg);
129 
130 #if GTEST_HAS_EXCEPTIONS
131 
133 /* an exported class was derived from a class that was not exported */)
134 
135 // This exception is thrown by (and only by) a failed Google Test
136 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
137 // are enabled). We derive it from std::runtime_error, which is for
138 // errors presumably detectable only at run time. Since
139 // std::runtime_error inherits from std::exception, many testing
140 // frameworks know how to extract and print the message inside it.
141 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
142  public:
143  explicit GoogleTestFailureException(const TestPartResult& failure);
144 };
145 
147 
148 #endif // GTEST_HAS_EXCEPTIONS
149 
150 namespace edit_distance {
151 // Returns the optimal edits to go from 'left' to 'right'.
152 // All edits cost the same, with replace having lower priority than
153 // add/remove.
154 // Simple implementation of the Wagner-Fischer algorithm.
155 // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
157 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
158  const std::vector<size_t>& left, const std::vector<size_t>& right);
159 
160 // Same as above, but the input is represented as strings.
161 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
162  const std::vector<std::string>& left,
163  const std::vector<std::string>& right);
164 
165 // Create a diff of the input strings in Unified diff format.
166 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
167  const std::vector<std::string>& right,
168  size_t context = 2);
169 
170 } // namespace edit_distance
171 
172 // Calculate the diff between 'left' and 'right' and return it in unified diff
173 // format.
174 // If not null, stores in 'total_line_count' the total number of lines found
175 // in left + right.
176 GTEST_API_ std::string DiffStrings(const std::string& left,
177  const std::string& right,
178  size_t* total_line_count);
179 
180 // Constructs and returns the message for an equality assertion
181 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
182 //
183 // The first four parameters are the expressions used in the assertion
184 // and their values, as strings. For example, for ASSERT_EQ(foo, bar)
185 // where foo is 5 and bar is 6, we have:
186 //
187 // expected_expression: "foo"
188 // actual_expression: "bar"
189 // expected_value: "5"
190 // actual_value: "6"
191 //
192 // The ignoring_case parameter is true iff the assertion is a
193 // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will
194 // be inserted into the message.
195 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
196  const char* actual_expression,
197  const std::string& expected_value,
198  const std::string& actual_value,
199  bool ignoring_case);
200 
201 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
203  const AssertionResult& assertion_result,
204  const char* expression_text,
205  const char* actual_predicate_value,
206  const char* expected_predicate_value);
207 
208 // This template class represents an IEEE floating-point number
209 // (either single-precision or double-precision, depending on the
210 // template parameters).
211 //
212 // The purpose of this class is to do more sophisticated number
213 // comparison. (Due to round-off error, etc, it's very unlikely that
214 // two floating-points will be equal exactly. Hence a naive
215 // comparison by the == operation often doesn't work.)
216 //
217 // Format of IEEE floating-point:
218 //
219 // The most-significant bit being the leftmost, an IEEE
220 // floating-point looks like
221 //
222 // sign_bit exponent_bits fraction_bits
223 //
224 // Here, sign_bit is a single bit that designates the sign of the
225 // number.
226 //
227 // For float, there are 8 exponent bits and 23 fraction bits.
228 //
229 // For double, there are 11 exponent bits and 52 fraction bits.
230 //
231 // More details can be found at
232 // http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
233 //
234 // Template parameter:
235 //
236 // RawType: the raw floating-point type (either float or double)
237 template <typename RawType>
239  public:
240  // Defines the unsigned integer type that has the same size as the
241  // floating point number.
243 
244  // Constants.
245 
246  // # of bits in a number.
247  static const size_t kBitCount = 8*sizeof(RawType);
248 
249  // # of fraction bits in a number.
250  static const size_t kFractionBitCount =
251  std::numeric_limits<RawType>::digits - 1;
252 
253  // # of exponent bits in a number.
254  static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
255 
256  // The mask for the sign bit.
257  static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
258 
259  // The mask for the fraction bits.
260  static const Bits kFractionBitMask =
261  ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
262 
263  // The mask for the exponent bits.
264  static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
265 
266  // How many ULP's (Units in the Last Place) we want to tolerate when
267  // comparing two numbers. The larger the value, the more error we
268  // allow. A 0 value means that two numbers must be exactly the same
269  // to be considered equal.
270  //
271  // The maximum error of a single floating-point operation is 0.5
272  // units in the last place. On Intel CPU's, all floating-point
273  // calculations are done with 80-bit precision, while double has 64
274  // bits. Therefore, 4 should be enough for ordinary use.
275  //
276  // See the following article for more details on ULP:
277  // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
278  static const size_t kMaxUlps = 4;
279 
280  // Constructs a FloatingPoint from a raw floating-point number.
281  //
282  // On an Intel CPU, passing a non-normalized NAN (Not a Number)
283  // around may change its bits, although the new value is guaranteed
284  // to be also a NAN. Therefore, don't expect this constructor to
285  // preserve the bits in x when x is a NAN.
286  explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
287 
288  // Static methods
289 
290  // Reinterprets a bit pattern as a floating-point number.
291  //
292  // This function is needed to test the AlmostEquals() method.
293  static RawType ReinterpretBits(const Bits bits) {
294  FloatingPoint fp(0);
295  fp.u_.bits_ = bits;
296  return fp.u_.value_;
297  }
298 
299  // Returns the floating-point number that represent positive infinity.
300  static RawType Infinity() {
301  return ReinterpretBits(kExponentBitMask);
302  }
303 
304  // Returns the maximum representable finite floating-point number.
305  static RawType Max();
306 
307  // Non-static methods
308 
309  // Returns the bits that represents this number.
310  const Bits &bits() const { return u_.bits_; }
311 
312  // Returns the exponent bits of this number.
313  Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
314 
315  // Returns the fraction bits of this number.
316  Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
317 
318  // Returns the sign bit of this number.
319  Bits sign_bit() const { return kSignBitMask & u_.bits_; }
320 
321  // Returns true iff this is NAN (not a number).
322  bool is_nan() const {
323  // It's a NAN if the exponent bits are all ones and the fraction
324  // bits are not entirely zeros.
325  return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
326  }
327 
328  // Returns true iff this number is at most kMaxUlps ULP's away from
329  // rhs. In particular, this function:
330  //
331  // - returns false if either number is (or both are) NAN.
332  // - treats really large numbers as almost equal to infinity.
333  // - thinks +0.0 and -0.0 are 0 DLP's apart.
334  bool AlmostEquals(const FloatingPoint& rhs) const {
335  // The IEEE standard says that any comparison operation involving
336  // a NAN must return false.
337  if (is_nan() || rhs.is_nan()) return false;
338 
339  return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
340  <= kMaxUlps;
341  }
342 
343  private:
344  // The data type used to store the actual floating-point number.
345  union FloatingPointUnion {
346  RawType value_; // The raw floating-point number.
347  Bits bits_; // The bits that represent the number.
348  };
349 
350  // Converts an integer from the sign-and-magnitude representation to
351  // the biased representation. More precisely, let N be 2 to the
352  // power of (kBitCount - 1), an integer x is represented by the
353  // unsigned number x + N.
354  //
355  // For instance,
356  //
357  // -N + 1 (the most negative number representable using
358  // sign-and-magnitude) is represented by 1;
359  // 0 is represented by N; and
360  // N - 1 (the biggest number representable using
361  // sign-and-magnitude) is represented by 2N - 1.
362  //
363  // Read http://en.wikipedia.org/wiki/Signed_number_representations
364  // for more details on signed number representations.
365  static Bits SignAndMagnitudeToBiased(const Bits &sam) {
366  if (kSignBitMask & sam) {
367  // sam represents a negative number.
368  return ~sam + 1;
369  } else {
370  // sam represents a positive number.
371  return kSignBitMask | sam;
372  }
373  }
374 
375  // Given two numbers in the sign-and-magnitude representation,
376  // returns the distance between them as an unsigned number.
377  static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
378  const Bits &sam2) {
379  const Bits biased1 = SignAndMagnitudeToBiased(sam1);
380  const Bits biased2 = SignAndMagnitudeToBiased(sam2);
381  return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
382  }
383 
384  FloatingPointUnion u_;
385 };
386 
387 // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
388 // macro defined by <windows.h>.
389 template <>
390 inline float FloatingPoint<float>::Max() { return FLT_MAX; }
391 template <>
392 inline double FloatingPoint<double>::Max() { return DBL_MAX; }
393 
394 // Typedefs the instances of the FloatingPoint template class that we
395 // care to use.
398 
399 // In order to catch the mistake of putting tests that use different
400 // test fixture classes in the same test suite, we need to assign
401 // unique IDs to fixture classes and compare them. The TypeId type is
402 // used to hold such IDs. The user should treat TypeId as an opaque
403 // type: the only operation allowed on TypeId values is to compare
404 // them for equality using the == operator.
405 typedef const void* TypeId;
406 
407 template <typename T>
409  public:
410  // dummy_ must not have a const type. Otherwise an overly eager
411  // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
412  // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
413  static bool dummy_;
414 };
415 
416 template <typename T>
417 bool TypeIdHelper<T>::dummy_ = false;
418 
419 // GetTypeId<T>() returns the ID of type T. Different values will be
420 // returned for different types. Calling the function twice with the
421 // same type argument is guaranteed to return the same ID.
422 template <typename T>
423 TypeId GetTypeId() {
424  // The compiler is required to allocate a different
425  // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
426  // the template. Therefore, the address of dummy_ is guaranteed to
427  // be unique.
428  return &(TypeIdHelper<T>::dummy_);
429 }
430 
431 // Returns the type ID of ::testing::Test. Always call this instead
432 // of GetTypeId< ::testing::Test>() to get the type ID of
433 // ::testing::Test, as the latter may give the wrong result due to a
434 // suspected linker bug when compiling Google Test as a Mac OS X
435 // framework.
436 GTEST_API_ TypeId GetTestTypeId();
437 
438 // Defines the abstract factory interface that creates instances
439 // of a Test object.
441  public:
442  virtual ~TestFactoryBase() {}
443 
444  // Creates a test instance to run. The instance is both created and destroyed
445  // within TestInfoImpl::Run()
446  virtual Test* CreateTest() = 0;
447 
448  protected:
450 
451  private:
453 };
454 
455 // This class provides implementation of TeastFactoryBase interface.
456 // It is used in TEST and TEST_F macros.
457 template <class TestClass>
459  public:
460  Test* CreateTest() override { return new TestClass; }
461 };
462 
463 #if GTEST_OS_WINDOWS
464 
465 // Predicate-formatters for implementing the HRESULT checking macros
466 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
467 // We pass a long instead of HRESULT to avoid causing an
468 // include dependency for the HRESULT type.
469 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
470  long hr); // NOLINT
471 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
472  long hr); // NOLINT
473 
474 #endif // GTEST_OS_WINDOWS
475 
476 // Types of SetUpTestSuite() and TearDownTestSuite() functions.
477 using SetUpTestSuiteFunc = void (*)();
478 using TearDownTestSuiteFunc = void (*)();
479 
480 struct CodeLocation {
481  CodeLocation(const std::string& a_file, int a_line)
482  : file(a_file), line(a_line) {}
483 
484  std::string file;
485  int line;
486 };
487 
488 // Helper to identify which setup function for TestCase / TestSuite to call.
489 // Only one function is allowed, either TestCase or TestSute but not both.
490 
491 // Utility functions to help SuiteApiResolver
492 using SetUpTearDownSuiteFuncType = void (*)();
493 
496  return a == def ? nullptr : a;
497 }
498 
499 template <typename T>
500 // Note that SuiteApiResolver inherits from T because
501 // SetUpTestSuite()/TearDownTestSuite() could be protected. Ths way
502 // SuiteApiResolver can access them.
503 struct SuiteApiResolver : T {
504  // testing::Test is only forward declared at this point. So we make it a
505  // dependend class for the compiler to be OK with it.
506  using Test =
508 
509  static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename,
510  int line_num) {
511  SetUpTearDownSuiteFuncType test_case_fp =
512  GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase);
513  SetUpTearDownSuiteFuncType test_suite_fp =
514  GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite);
515 
516  GTEST_CHECK_(!test_case_fp || !test_suite_fp)
517  << "Test can not provide both SetUpTestSuite and SetUpTestCase, please "
518  "make sure there is only one present at "
519  << filename << ":" << line_num;
520 
521  return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
522  }
523 
525  int line_num) {
526  SetUpTearDownSuiteFuncType test_case_fp =
527  GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase);
528  SetUpTearDownSuiteFuncType test_suite_fp =
529  GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite);
530 
531  GTEST_CHECK_(!test_case_fp || !test_suite_fp)
532  << "Test can not provide both TearDownTestSuite and TearDownTestCase,"
533  " please make sure there is only one present at"
534  << filename << ":" << line_num;
535 
536  return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
537  }
538 };
539 
540 // Creates a new TestInfo object and registers it with Google Test;
541 // returns the created object.
542 //
543 // Arguments:
544 //
545 // test_suite_name: name of the test suite
546 // name: name of the test
547 // type_param the name of the test's type parameter, or NULL if
548 // this is not a typed or a type-parameterized test.
549 // value_param text representation of the test's value parameter,
550 // or NULL if this is not a type-parameterized test.
551 // code_location: code location where the test is defined
552 // fixture_class_id: ID of the test fixture class
553 // set_up_tc: pointer to the function that sets up the test suite
554 // tear_down_tc: pointer to the function that tears down the test suite
555 // factory: pointer to the factory that creates a test object.
556 // The newly created TestInfo instance will assume
557 // ownership of the factory object.
559  const char* test_suite_name, const char* name, const char* type_param,
560  const char* value_param, CodeLocation code_location,
561  TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
562  TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory);
563 
564 // If *pstr starts with the given prefix, modifies *pstr to be right
565 // past the prefix and returns true; otherwise leaves *pstr unchanged
566 // and returns false. None of pstr, *pstr, and prefix can be NULL.
567 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
568 
569 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
570 
572 /* class A needs to have dll-interface to be used by clients of class B */)
573 
574 // State of the definition of a type-parameterized test suite.
575 class GTEST_API_ TypedTestSuitePState {
576  public:
577  TypedTestSuitePState() : registered_(false) {}
578 
579  // Adds the given test name to defined_test_names_ and return true
580  // if the test suite hasn't been registered; otherwise aborts the
581  // program.
582  bool AddTestName(const char* file, int line, const char* case_name,
583  const char* test_name) {
584  if (registered_) {
585  fprintf(stderr,
586  "%s Test %s must be defined before "
587  "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n",
588  FormatFileLocation(file, line).c_str(), test_name, case_name);
589  fflush(stderr);
590  posix::Abort();
591  }
592  registered_tests_.insert(
593  ::std::make_pair(test_name, CodeLocation(file, line)));
594  return true;
595  }
596 
597  bool TestExists(const std::string& test_name) const {
598  return registered_tests_.count(test_name) > 0;
599  }
600 
601  const CodeLocation& GetCodeLocation(const std::string& test_name) const {
602  RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
603  GTEST_CHECK_(it != registered_tests_.end());
604  return it->second;
605  }
606 
607  // Verifies that registered_tests match the test names in
608  // defined_test_names_; returns registered_tests if successful, or
609  // aborts the program otherwise.
610  const char* VerifyRegisteredTestNames(
611  const char* file, int line, const char* registered_tests);
612 
613  private:
614  typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap;
615 
616  bool registered_;
617  RegisteredTestsMap registered_tests_;
618 };
619 
620 // Legacy API is deprecated but still available
621 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
622 using TypedTestCasePState = TypedTestSuitePState;
623 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
624 
626 
627 // Skips to the first non-space char after the first comma in 'str';
628 // returns NULL if no comma is found in 'str'.
629 inline const char* SkipComma(const char* str) {
630  const char* comma = strchr(str, ',');
631  if (comma == nullptr) {
632  return nullptr;
633  }
634  while (IsSpace(*(++comma))) {}
635  return comma;
636 }
637 
638 // Returns the prefix of 'str' before the first comma in it; returns
639 // the entire string if it contains no comma.
640 inline std::string GetPrefixUntilComma(const char* str) {
641  const char* comma = strchr(str, ',');
642  return comma == nullptr ? str : std::string(str, comma);
643 }
644 
645 // Splits a given string on a given delimiter, populating a given
646 // vector with the fields.
647 void SplitString(const ::std::string& str, char delimiter,
648  ::std::vector< ::std::string>* dest);
649 
650 // The default argument to the template below for the case when the user does
651 // not provide a name generator.
652 struct DefaultNameGenerator {
653  template <typename T>
654  static std::string GetName(int i) {
655  return StreamableToString(i);
656  }
657 };
658 
659 template <typename Provided = DefaultNameGenerator>
660 struct NameGeneratorSelector {
661  typedef Provided type;
662 };
663 
664 template <typename NameGenerator>
665 void GenerateNamesRecursively(Types0, std::vector<std::string>*, int) {}
666 
667 template <typename NameGenerator, typename Types>
668 void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
669  result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
670  GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
671  i + 1);
672 }
673 
674 template <typename NameGenerator, typename Types>
675 std::vector<std::string> GenerateNames() {
676  std::vector<std::string> result;
677  GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
678  return result;
679 }
680 
681 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
682 // registers a list of type-parameterized tests with Google Test. The
683 // return value is insignificant - we just need to return something
684 // such that we can call this function in a namespace scope.
685 //
686 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
687 // template parameter. It's defined in gtest-type-util.h.
688 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
689 class TypeParameterizedTest {
690  public:
691  // 'index' is the index of the test in the type list 'Types'
692  // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite,
693  // Types). Valid values for 'index' are [0, N - 1] where N is the
694  // length of Types.
695  static bool Register(const char* prefix, const CodeLocation& code_location,
696  const char* case_name, const char* test_names, int index,
697  const std::vector<std::string>& type_names =
698  GenerateNames<DefaultNameGenerator, Types>()) {
699  typedef typename Types::Head Type;
700  typedef Fixture<Type> FixtureClass;
701  typedef typename GTEST_BIND_(TestSel, Type) TestClass;
702 
703  // First, registers the first type-parameterized test in the type
704  // list.
706  (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
707  "/" + type_names[static_cast<size_t>(index)])
708  .c_str(),
709  StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
710  GetTypeName<Type>().c_str(),
711  nullptr, // No value parameter.
712  code_location, GetTypeId<FixtureClass>(),
714  code_location.file.c_str(), code_location.line),
716  code_location.file.c_str(), code_location.line),
718 
719  // Next, recurses (at compile time) with the tail of the type list.
720  return TypeParameterizedTest<Fixture, TestSel,
721  typename Types::Tail>::Register(prefix,
722  code_location,
723  case_name,
724  test_names,
725  index + 1,
726  type_names);
727  }
728 };
729 
730 // The base case for the compile time recursion.
731 template <GTEST_TEMPLATE_ Fixture, class TestSel>
732 class TypeParameterizedTest<Fixture, TestSel, Types0> {
733  public:
734  static bool Register(const char* /*prefix*/, const CodeLocation&,
735  const char* /*case_name*/, const char* /*test_names*/,
736  int /*index*/,
737  const std::vector<std::string>& =
738  std::vector<std::string>() /*type_names*/) {
739  return true;
740  }
741 };
742 
743 // TypeParameterizedTestSuite<Fixture, Tests, Types>::Register()
744 // registers *all combinations* of 'Tests' and 'Types' with Google
745 // Test. The return value is insignificant - we just need to return
746 // something such that we can call this function in a namespace scope.
747 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
748 class TypeParameterizedTestSuite {
749  public:
750  static bool Register(const char* prefix, CodeLocation code_location,
751  const TypedTestSuitePState* state, const char* case_name,
752  const char* test_names,
753  const std::vector<std::string>& type_names =
754  GenerateNames<DefaultNameGenerator, Types>()) {
755  std::string test_name = StripTrailingSpaces(
756  GetPrefixUntilComma(test_names));
757  if (!state->TestExists(test_name)) {
758  fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
759  case_name, test_name.c_str(),
760  FormatFileLocation(code_location.file.c_str(),
761  code_location.line).c_str());
762  fflush(stderr);
763  posix::Abort();
764  }
765  const CodeLocation& test_location = state->GetCodeLocation(test_name);
766 
767  typedef typename Tests::Head Head;
768 
769  // First, register the first test in 'Test' for each type in 'Types'.
770  TypeParameterizedTest<Fixture, Head, Types>::Register(
771  prefix, test_location, case_name, test_names, 0, type_names);
772 
773  // Next, recurses (at compile time) with the tail of the test list.
774  return TypeParameterizedTestSuite<Fixture, typename Tests::Tail,
775  Types>::Register(prefix, code_location,
776  state, case_name,
777  SkipComma(test_names),
778  type_names);
779  }
780 };
781 
782 // The base case for the compile time recursion.
783 template <GTEST_TEMPLATE_ Fixture, typename Types>
784 class TypeParameterizedTestSuite<Fixture, Templates0, Types> {
785  public:
786  static bool Register(const char* /*prefix*/, const CodeLocation&,
787  const TypedTestSuitePState* /*state*/,
788  const char* /*case_name*/, const char* /*test_names*/,
789  const std::vector<std::string>& =
790  std::vector<std::string>() /*type_names*/) {
791  return true;
792  }
793 };
794 
795 #endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
796 
797 // Returns the current OS stack trace as an std::string.
798 //
799 // The maximum number of stack frames to be included is specified by
800 // the gtest_stack_trace_depth flag. The skip_count parameter
801 // specifies the number of top frames to be skipped, which doesn't
802 // count against the number of frames to be included.
803 //
804 // For example, if Foo() calls Bar(), which in turn calls
805 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
806 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
808  UnitTest* unit_test, int skip_count);
809 
810 // Helpers for suppressing warnings on unreachable code or constant
811 // condition.
812 
813 // Always returns true.
814 GTEST_API_ bool AlwaysTrue();
815 
816 // Always returns false.
817 inline bool AlwaysFalse() { return !AlwaysTrue(); }
818 
819 // Helper for suppressing false warning from Clang on a const char*
820 // variable declared in a conditional expression always being NULL in
821 // the else branch.
823  ConstCharPtr(const char* str) : value(str) {}
824  operator bool() const { return true; }
825  const char* value;
826 };
827 
828 // A simple Linear Congruential Generator for generating random
829 // numbers with a uniform distribution. Unlike rand() and srand(), it
830 // doesn't use global state (and therefore can't interfere with user
831 // code). Unlike rand_r(), it's portable. An LCG isn't very random,
832 // but it's good enough for our purposes.
834  public:
835  static const UInt32 kMaxRange = 1u << 31;
836 
837  explicit Random(UInt32 seed) : state_(seed) {}
838 
839  void Reseed(UInt32 seed) { state_ = seed; }
840 
841  // Generates a random number from [0, range). Crashes if 'range' is
842  // 0 or greater than kMaxRange.
843  UInt32 Generate(UInt32 range);
844 
845  private:
846  UInt32 state_;
848 };
849 
850 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
851 // compiler error iff T1 and T2 are different types.
852 template <typename T1, typename T2>
854 
855 template <typename T>
857 };
858 
859 // Removes the reference from a type if it is a reference type,
860 // otherwise leaves it unchanged. This is the same as
861 // tr1::remove_reference, which is not widely available yet.
862 template <typename T>
863 struct RemoveReference { typedef T type; }; // NOLINT
864 template <typename T>
865 struct RemoveReference<T&> { typedef T type; }; // NOLINT
866 
867 // A handy wrapper around RemoveReference that works when the argument
868 // T depends on template parameters.
869 #define GTEST_REMOVE_REFERENCE_(T) \
870  typename ::testing::internal::RemoveReference<T>::type
871 
872 // Removes const from a type if it is a const type, otherwise leaves
873 // it unchanged. This is the same as tr1::remove_const, which is not
874 // widely available yet.
875 template <typename T>
876 struct RemoveConst { typedef T type; }; // NOLINT
877 template <typename T>
878 struct RemoveConst<const T> { typedef T type; }; // NOLINT
879 
880 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
881 // definition to fail to remove the const in 'const int[3]' and 'const
882 // char[3][4]'. The following specialization works around the bug.
883 template <typename T, size_t N>
884 struct RemoveConst<const T[N]> {
885  typedef typename RemoveConst<T>::type type[N];
886 };
887 
888 // A handy wrapper around RemoveConst that works when the argument
889 // T depends on template parameters.
890 #define GTEST_REMOVE_CONST_(T) \
891  typename ::testing::internal::RemoveConst<T>::type
892 
893 // Turns const U&, U&, const U, and U all into U.
894 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
895  GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
896 
897 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
898 // true iff T is type proto2::Message or a subclass of it.
899 template <typename T>
901  : public bool_constant<
902  std::is_convertible<const T*, const ::proto2::Message*>::value> {
903 };
904 
905 // When the compiler sees expression IsContainerTest<C>(0), if C is an
906 // STL-style container class, the first overload of IsContainerTest
907 // will be viable (since both C::iterator* and C::const_iterator* are
908 // valid types and NULL can be implicitly converted to them). It will
909 // be picked over the second overload as 'int' is a perfect match for
910 // the type of argument 0. If C::iterator or C::const_iterator is not
911 // a valid type, the first overload is not viable, and the second
912 // overload will be picked. Therefore, we can determine whether C is
913 // a container class by checking the type of IsContainerTest<C>(0).
914 // The value of the expression is insignificant.
915 //
916 // In C++11 mode we check the existence of a const_iterator and that an
917 // iterator is properly implemented for the container.
918 //
919 // For pre-C++11 that we look for both C::iterator and C::const_iterator.
920 // The reason is that C++ injects the name of a class as a member of the
921 // class itself (e.g. you can refer to class iterator as either
922 // 'iterator' or 'iterator::iterator'). If we look for C::iterator
923 // only, for example, we would mistakenly think that a class named
924 // iterator is an STL container.
925 //
926 // Also note that the simpler approach of overloading
927 // IsContainerTest(typename C::const_iterator*) and
928 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
929 typedef int IsContainer;
930 template <class C,
931  class Iterator = decltype(::std::declval<const C&>().begin()),
932  class = decltype(::std::declval<const C&>().end()),
933  class = decltype(++::std::declval<Iterator&>()),
934  class = decltype(*::std::declval<Iterator>()),
935  class = typename C::const_iterator>
936 IsContainer IsContainerTest(int /* dummy */) {
937  return 0;
938 }
939 
940 typedef char IsNotContainer;
941 template <class C>
942 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
943 
944 // Trait to detect whether a type T is a hash table.
945 // The heuristic used is that the type contains an inner type `hasher` and does
946 // not contain an inner type `reverse_iterator`.
947 // If the container is iterable in reverse, then order might actually matter.
948 template <typename T>
949 struct IsHashTable {
950  private:
951  template <typename U>
952  static char test(typename U::hasher*, typename U::reverse_iterator*);
953  template <typename U>
954  static int test(typename U::hasher*, ...);
955  template <typename U>
956  static char test(...);
957 
958  public:
959  static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int);
960 };
961 
962 template <typename T>
963 const bool IsHashTable<T>::value;
964 
965 template <typename C,
966  bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)>
968 
969 template <typename C>
971 
972 // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
973 // obey the same inconsistencies as the IsContainerTest, namely check if
974 // something is a container is relying on only const_iterator in C++11 and
975 // is relying on both const_iterator and iterator otherwise
976 template <typename C>
978  using value_type = decltype(*std::declval<typename C::const_iterator>());
979  using type =
980  is_same<typename std::remove_const<
982  C>;
983 };
984 
985 // IsRecursiveContainer<Type> is a unary compile-time predicate that
986 // evaluates whether C is a recursive container type. A recursive container
987 // type is a container type whose value_type is equal to the container type
988 // itself. An example for a recursive container type is
989 // boost::filesystem::path, whose iterator has a value_type that is equal to
990 // boost::filesystem::path.
991 template <typename C>
993 
994 // EnableIf<condition>::type is void when 'Cond' is true, and
995 // undefined when 'Cond' is false. To use SFINAE to make a function
996 // overload only apply when a particular expression is true, add
997 // "typename EnableIf<expression>::type* = 0" as the last parameter.
998 template<bool> struct EnableIf;
999 template<> struct EnableIf<true> { typedef void type; }; // NOLINT
1000 
1001 // Utilities for native arrays.
1002 
1003 // ArrayEq() compares two k-dimensional native arrays using the
1004 // elements' operator==, where k can be any integer >= 0. When k is
1005 // 0, ArrayEq() degenerates into comparing a single pair of values.
1006 
1007 template <typename T, typename U>
1008 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
1009 
1010 // This generic version is used when k is 0.
1011 template <typename T, typename U>
1012 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
1013 
1014 // This overload is used when k >= 1.
1015 template <typename T, typename U, size_t N>
1016 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
1017  return internal::ArrayEq(lhs, N, rhs);
1018 }
1019 
1020 // This helper reduces code bloat. If we instead put its logic inside
1021 // the previous ArrayEq() function, arrays with different sizes would
1022 // lead to different copies of the template code.
1023 template <typename T, typename U>
1024 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
1025  for (size_t i = 0; i != size; i++) {
1026  if (!internal::ArrayEq(lhs[i], rhs[i]))
1027  return false;
1028  }
1029  return true;
1030 }
1031 
1032 // Finds the first element in the iterator range [begin, end) that
1033 // equals elem. Element may be a native array type itself.
1034 template <typename Iter, typename Element>
1035 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
1036  for (Iter it = begin; it != end; ++it) {
1037  if (internal::ArrayEq(*it, elem))
1038  return it;
1039  }
1040  return end;
1041 }
1042 
1043 // CopyArray() copies a k-dimensional native array using the elements'
1044 // operator=, where k can be any integer >= 0. When k is 0,
1045 // CopyArray() degenerates into copying a single value.
1046 
1047 template <typename T, typename U>
1048 void CopyArray(const T* from, size_t size, U* to);
1049 
1050 // This generic version is used when k is 0.
1051 template <typename T, typename U>
1052 inline void CopyArray(const T& from, U* to) { *to = from; }
1053 
1054 // This overload is used when k >= 1.
1055 template <typename T, typename U, size_t N>
1056 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
1057  internal::CopyArray(from, N, *to);
1058 }
1059 
1060 // This helper reduces code bloat. If we instead put its logic inside
1061 // the previous CopyArray() function, arrays with different sizes
1062 // would lead to different copies of the template code.
1063 template <typename T, typename U>
1064 void CopyArray(const T* from, size_t size, U* to) {
1065  for (size_t i = 0; i != size; i++) {
1066  internal::CopyArray(from[i], to + i);
1067  }
1068 }
1069 
1070 // The relation between an NativeArray object (see below) and the
1071 // native array it represents.
1072 // We use 2 different structs to allow non-copyable types to be used, as long
1073 // as RelationToSourceReference() is passed.
1076 
1077 // Adapts a native array to a read-only STL-style container. Instead
1078 // of the complete STL container concept, this adaptor only implements
1079 // members useful for Google Mock's container matchers. New members
1080 // should be added as needed. To simplify the implementation, we only
1081 // support Element being a raw type (i.e. having no top-level const or
1082 // reference modifier). It's the client's responsibility to satisfy
1083 // this requirement. Element can be an array type itself (hence
1084 // multi-dimensional arrays are supported).
1085 template <typename Element>
1087  public:
1088  // STL-style container typedefs.
1089  typedef Element value_type;
1090  typedef Element* iterator;
1091  typedef const Element* const_iterator;
1092 
1093  // Constructs from a native array. References the source.
1094  NativeArray(const Element* array, size_t count, RelationToSourceReference) {
1095  InitRef(array, count);
1096  }
1097 
1098  // Constructs from a native array. Copies the source.
1099  NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1100  InitCopy(array, count);
1101  }
1102 
1103  // Copy constructor.
1104  NativeArray(const NativeArray& rhs) {
1105  (this->*rhs.clone_)(rhs.array_, rhs.size_);
1106  }
1107 
1109  if (clone_ != &NativeArray::InitRef)
1110  delete[] array_;
1111  }
1112 
1113  // STL-style container methods.
1114  size_t size() const { return size_; }
1115  const_iterator begin() const { return array_; }
1116  const_iterator end() const { return array_ + size_; }
1117  bool operator==(const NativeArray& rhs) const {
1118  return size() == rhs.size() &&
1119  ArrayEq(begin(), size(), rhs.begin());
1120  }
1121 
1122  private:
1123  enum {
1124  kCheckTypeIsNotConstOrAReference = StaticAssertTypeEqHelper<
1125  Element, GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>::value
1126  };
1127 
1128  // Initializes this object with a copy of the input.
1129  void InitCopy(const Element* array, size_t a_size) {
1130  Element* const copy = new Element[a_size];
1131  CopyArray(array, a_size, copy);
1132  array_ = copy;
1133  size_ = a_size;
1134  clone_ = &NativeArray::InitCopy;
1135  }
1136 
1137  // Initializes this object with a reference of the input.
1138  void InitRef(const Element* array, size_t a_size) {
1139  array_ = array;
1140  size_ = a_size;
1141  clone_ = &NativeArray::InitRef;
1142  }
1143 
1144  const Element* array_;
1145  size_t size_;
1146  void (NativeArray::*clone_)(const Element*, size_t);
1147 
1149 };
1150 
1151 // Backport of std::index_sequence.
1152 template <size_t... Is>
1155 };
1156 
1157 // Double the IndexSequence, and one if plus_one is true.
1158 template <bool plus_one, typename T, size_t sizeofT>
1160 template <size_t... I, size_t sizeofT>
1161 struct DoubleSequence<true, IndexSequence<I...>, sizeofT> {
1162  using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>;
1163 };
1164 template <size_t... I, size_t sizeofT>
1165 struct DoubleSequence<false, IndexSequence<I...>, sizeofT> {
1166  using type = IndexSequence<I..., (sizeofT + I)...>;
1167 };
1168 
1169 // Backport of std::make_index_sequence.
1170 // It uses O(ln(N)) instantiation depth.
1171 template <size_t N>
1173  : DoubleSequence<N % 2 == 1, typename MakeIndexSequence<N / 2>::type,
1174  N / 2>::type {};
1175 
1176 template <>
1178 
1179 // FIXME: This implementation of ElemFromList is O(1) in instantiation depth,
1180 // but it is O(N^2) in total instantiations. Not sure if this is the best
1181 // tradeoff, as it will make it somewhat slow to compile.
1182 template <typename T, size_t, size_t>
1184 
1185 template <typename T, size_t I>
1186 struct ElemFromListImpl<T, I, I> {
1187  using type = T;
1188 };
1189 
1190 // Get the Nth element from T...
1191 // It uses O(1) instantiation depth.
1192 template <size_t N, typename I, typename... T>
1194 
1195 template <size_t N, size_t... I, typename... T>
1196 struct ElemFromList<N, IndexSequence<I...>, T...>
1197  : ElemFromListImpl<T, N, I>... {};
1198 
1199 template <typename... T>
1201 
1202 template <typename Derived, size_t I>
1204 
1205 template <typename... T, size_t I>
1206 struct FlatTupleElemBase<FlatTuple<T...>, I> {
1207  using value_type =
1208  typename ElemFromList<I, typename MakeIndexSequence<sizeof...(T)>::type,
1209  T...>::type;
1210  FlatTupleElemBase() = default;
1211  explicit FlatTupleElemBase(value_type t) : value(std::move(t)) {}
1212  value_type value;
1213 };
1214 
1215 template <typename Derived, typename Idx>
1217 
1218 template <size_t... Idx, typename... T>
1219 struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>>
1220  : FlatTupleElemBase<FlatTuple<T...>, Idx>... {
1221  using Indices = IndexSequence<Idx...>;
1222  FlatTupleBase() = default;
1223  explicit FlatTupleBase(T... t)
1224  : FlatTupleElemBase<FlatTuple<T...>, Idx>(std::move(t))... {}
1225 };
1226 
1227 // Analog to std::tuple but with different tradeoffs.
1228 // This class minimizes the template instantiation depth, thus allowing more
1229 // elements that std::tuple would. std::tuple has been seen to require an
1230 // instantiation depth of more than 10x the number of elements in some
1231 // implementations.
1232 // FlatTuple and ElemFromList are not recursive and have a fixed depth
1233 // regardless of T...
1234 // MakeIndexSequence, on the other hand, it is recursive but with an
1235 // instantiation depth of O(ln(N)).
1236 template <typename... T>
1237 class FlatTuple
1238  : private FlatTupleBase<FlatTuple<T...>,
1239  typename MakeIndexSequence<sizeof...(T)>::type> {
1240  using Indices = typename FlatTuple::FlatTupleBase::Indices;
1241 
1242  public:
1243  FlatTuple() = default;
1244  explicit FlatTuple(T... t) : FlatTuple::FlatTupleBase(std::move(t)...) {}
1245 
1246  template <size_t I>
1247  const typename ElemFromList<I, Indices, T...>::type& Get() const {
1248  return static_cast<const FlatTupleElemBase<FlatTuple, I>*>(this)->value;
1249  }
1250 
1251  template <size_t I>
1252  typename ElemFromList<I, Indices, T...>::type& Get() {
1253  return static_cast<FlatTupleElemBase<FlatTuple, I>*>(this)->value;
1254  }
1255 };
1256 
1257 // Utility functions to be called with static_assert to induce deprecation
1258 // warnings.
1260  "INSTANTIATE_TEST_CASE_P is deprecated, please use "
1261  "INSTANTIATE_TEST_SUITE_P")
1262 constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; }
1263 
1265  "TYPED_TEST_CASE_P is deprecated, please use "
1266  "TYPED_TEST_SUITE_P")
1267 constexpr bool TypedTestCase_P_IsDeprecated() { return true; }
1268 
1270  "TYPED_TEST_CASE is deprecated, please use "
1271  "TYPED_TEST_SUITE")
1272 constexpr bool TypedTestCaseIsDeprecated() { return true; }
1273 
1275  "REGISTER_TYPED_TEST_CASE_P is deprecated, please use "
1276  "REGISTER_TYPED_TEST_SUITE_P")
1277 constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; }
1278 
1280  "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use "
1281  "INSTANTIATE_TYPED_TEST_SUITE_P")
1282 constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; }
1283 
1284 } // namespace internal
1285 } // namespace testing
1286 
1287 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1288  ::testing::internal::AssertHelper(result_type, file, line, message) \
1289  = ::testing::Message()
1290 
1291 #define GTEST_MESSAGE_(message, result_type) \
1292  GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1293 
1294 #define GTEST_FATAL_FAILURE_(message) \
1295  return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1296 
1297 #define GTEST_NONFATAL_FAILURE_(message) \
1298  GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1299 
1300 #define GTEST_SUCCESS_(message) \
1301  GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1302 
1303 #define GTEST_SKIP_(message) \
1304  return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip)
1305 
1306 // Suppress MSVC warning 4072 (unreachable code) for the code following
1307 // statement if it returns or throws (or doesn't return or throw in some
1308 // situations).
1309 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1310  if (::testing::internal::AlwaysTrue()) { statement; }
1311 
1312 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1313  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1314  if (::testing::internal::ConstCharPtr gtest_msg = "") { \
1315  bool gtest_caught_expected = false; \
1316  try { \
1317  GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1318  } \
1319  catch (expected_exception const&) { \
1320  gtest_caught_expected = true; \
1321  } \
1322  catch (...) { \
1323  gtest_msg.value = \
1324  "Expected: " #statement " throws an exception of type " \
1325  #expected_exception ".\n Actual: it throws a different type."; \
1326  goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1327  } \
1328  if (!gtest_caught_expected) { \
1329  gtest_msg.value = \
1330  "Expected: " #statement " throws an exception of type " \
1331  #expected_exception ".\n Actual: it throws nothing."; \
1332  goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1333  } \
1334  } else \
1335  GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
1336  fail(gtest_msg.value)
1337 
1338 #define GTEST_TEST_NO_THROW_(statement, fail) \
1339  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1340  if (::testing::internal::AlwaysTrue()) { \
1341  try { \
1342  GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1343  } \
1344  catch (...) { \
1345  goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1346  } \
1347  } else \
1348  GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1349  fail("Expected: " #statement " doesn't throw an exception.\n" \
1350  " Actual: it throws.")
1351 
1352 #define GTEST_TEST_ANY_THROW_(statement, fail) \
1353  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1354  if (::testing::internal::AlwaysTrue()) { \
1355  bool gtest_caught_any = false; \
1356  try { \
1357  GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1358  } \
1359  catch (...) { \
1360  gtest_caught_any = true; \
1361  } \
1362  if (!gtest_caught_any) { \
1363  goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1364  } \
1365  } else \
1366  GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1367  fail("Expected: " #statement " throws an exception.\n" \
1368  " Actual: it doesn't.")
1369 
1370 
1371 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1372 // either a boolean expression or an AssertionResult. text is a textual
1373 // represenation of expression as it was passed into the EXPECT_TRUE.
1374 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1375  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1376  if (const ::testing::AssertionResult gtest_ar_ = \
1377  ::testing::AssertionResult(expression)) \
1378  ; \
1379  else \
1380  fail(::testing::internal::GetBoolAssertionFailureMessage(\
1381  gtest_ar_, text, #actual, #expected).c_str())
1382 
1383 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1384  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1385  if (::testing::internal::AlwaysTrue()) { \
1386  ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1387  GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1388  if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1389  goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1390  } \
1391  } else \
1392  GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1393  fail("Expected: " #statement " doesn't generate new fatal " \
1394  "failures in the current thread.\n" \
1395  " Actual: it does.")
1396 
1397 // Expands to the name of the class that implements the given test.
1398 #define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1399  test_suite_name##_##test_name##_Test
1400 
1401 // Helper macro for defining tests.
1402 #define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id) \
1403  class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1404  : public parent_class { \
1405  public: \
1406  GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() {} \
1407  \
1408  private: \
1409  virtual void TestBody(); \
1410  static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_; \
1411  GTEST_DISALLOW_COPY_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name, \
1412  test_name)); \
1413  }; \
1414  \
1415  ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name, \
1416  test_name)::test_info_ = \
1417  ::testing::internal::MakeAndRegisterTestInfo( \
1418  #test_suite_name, #test_name, nullptr, nullptr, \
1419  ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \
1420  ::testing::internal::SuiteApiResolver< \
1421  parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__), \
1422  ::testing::internal::SuiteApiResolver< \
1423  parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__), \
1424  new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_( \
1425  test_suite_name, test_name)>); \
1426  void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody()
1427 
1428 #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
Element * iterator
Definition: gtest-internal.h:1090
TypeId GetTypeId()
Definition: gtest-internal.h:423
bool operator==(const NativeArray &rhs) const
Definition: gtest-internal.h:1117
const char * value
Definition: gtest-internal.h:825
CodeLocation(const std::string &a_file, int a_line)
Definition: gtest-internal.h:481
static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char *filename, int line_num)
Definition: gtest-internal.h:524
Definition: gmock-actions.h:59
T type
Definition: gtest-internal.h:878
Definition: gtest-internal.h:1086
GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(UnitTest *unit_test, int skip_count)
Definition: gtest.cc:5640
Bits exponent_bits() const
Definition: gtest-internal.h:313
Definition: gtest-internal.h:967
int * count
Definition: gmock_stress_test.cc:96
virtual ~TestFactoryBase()
Definition: gtest-internal.h:442
static RawType Infinity()
Definition: gtest-internal.h:300
Definition: gtest_skip_test.cc:42
T type
Definition: gtest-internal.h:863
Definition: gtest-internal.h:822
T type
Definition: gtest-internal.h:865
#define GTEST_DISABLE_MSC_WARNINGS_POP_()
Definition: gtest-port.h:314
int IsContainer
Definition: gtest-internal.h:929
static RawType ReinterpretBits(const Bits bits)
Definition: gtest-internal.h:293
::std::string PrintToString(const T &value)
Definition: gtest-printers.h:914
Definition: gtest-internal.h:156
ct::core::ControlVector< control_dim > u
typename std::conditional< sizeof(T)!=0,::testing::Test, void >::type Test
Definition: gtest-internal.h:507
Bits sign_bit() const
Definition: gtest-internal.h:319
IsNotContainer IsContainerTest(long)
Definition: gtest-internal.h:942
const Element * const_iterator
Definition: gtest-internal.h:1091
GTEST_API_::std::string FormatFileLocation(const char *file, int line)
Definition: gtest-port.cc:1018
Definition: gtest-internal.h:503
Definition: gtest-internal.h:156
FloatingPoint(const RawType &x)
Definition: gtest-internal.h:286
IgnoredValue(const T &)
Definition: gtest-internal.h:123
Definition: gtest-internal.h:863
NativeArray(const Element *array, size_t count, RelationToSourceReference)
Definition: gtest-internal.h:1094
void SplitString(const ::std::string &str, char delimiter,::std::vector< ::std::string > *dest)
Definition: gtest.cc:946
dest
Definition: upload.py:394
Definition: gtest-internal.h:833
T type
Definition: gtest-internal.h:876
const_iterator begin() const
Definition: gtest-internal.h:1115
GTEST_API_ bool SkipPrefix(const char *prefix, const char **pstr)
Definition: gtest.cc:5668
FlatTupleElemBase(value_type t)
Definition: gtest-internal.h:1211
Definition: gtest-port.h:2183
Definition: gtest-internal.h:1193
Definition: gtest-internal.h:458
T type
Definition: gtest-internal.h:1187
EditType
Definition: gtest-internal.h:156
#define GTEST_API_
Definition: gtest-port.h:759
Definition: gtest-internal.h:853
int i
Definition: gmock-matchers_test.cc:711
clear all close all load ct GNMSLog0 mat reformat t
Definition: gtest-internal.h:156
Element value_type
Definition: gtest-internal.h:1089
void(*)( TearDownTestSuiteFunc)
Definition: gtest-internal.h:478
Definition: gtest-message.h:90
void test()
Definition: SensitivityIntegratorTest.cpp:66
Definition: gtest-internal.h:440
GTEST_API_ std::vector< EditType > CalculateOptimalEdits(const std::vector< std::string > &left, const std::vector< std::string > &right)
Definition: gtest.cc:1117
#define GTEST_DISALLOW_ASSIGN_(type)
Definition: gtest-port.h:683
std::string StreamableToString(const T &streamable)
Definition: gtest-message.h:209
TypeWithSize< 4 >::UInt UInt32
Definition: gtest-port.h:2217
void(*)( SetUpTearDownSuiteFuncType)
Definition: gtest-internal.h:492
typename ElemFromList< I, typename MakeIndexSequence< sizeof...(T)>::type, T... >::type value_type
Definition: gtest-internal.h:1209
const void * TypeId
Definition: gtest-internal.h:405
Definition: gtest.h:1238
Definition: gtest-internal.h:480
bool IsSpace(char ch)
Definition: gtest-port.h:1986
GTEST_API_ TypeId GetTestTypeId()
Definition: gtest.cc:648
Definition: gtest-internal.h:1216
void CopyArray(const T(&from)[N], U(*to)[N])
Definition: gtest-internal.h:1056
Definition: gtest.h:402
FloatingPoint< float > Float
Definition: gtest-internal.h:396
FloatingPoint< double > Double
Definition: gtest-internal.h:397
Definition: gtest-internal.h:998
#define GTEST_DISABLE_MSC_WARNINGS_PUSH_(warnings)
Definition: gtest-port.h:313
GTEST_API_ TestInfo * MakeAndRegisterTestInfo(const char *test_suite_name, const char *name, const char *type_param, const char *value_param, CodeLocation code_location, TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc, TearDownTestSuiteFunc tear_down_tc, TestFactoryBase *factory)
Definition: gtest.cc:2595
#define GTEST_CHECK_(condition)
Definition: gtest-port.h:1014
void Reseed(UInt32 seed)
Definition: gtest-internal.h:839
Test * CreateTest() override
Definition: gtest-internal.h:460
Definition: gtest-internal.h:949
def Iter(n, format, sep='')
Definition: gen_gtest_pred_impl.py:188
GTEST_API_ bool AlwaysTrue()
Definition: gtest.cc:5655
bool AlwaysFalse()
Definition: gtest-internal.h:817
int line
Definition: gtest-internal.h:485
bool AlmostEquals(const FloatingPoint &rhs) const
Definition: gtest-internal.h:334
NativeArray(const Element *array, size_t count, RelationToSourceCopy)
Definition: gtest-internal.h:1099
NativeArray(const NativeArray &rhs)
Definition: gtest-internal.h:1104
SetUpTearDownSuiteFuncType GetNotDefaultOrNull(SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def)
Definition: gtest-internal.h:494
void type
Definition: gtest-internal.h:999
Definition: gtest-internal.h:1172
Definition: gtest-internal.h:1159
ElemFromList< I, Indices, T... >::type & Get()
Definition: gtest-internal.h:1252
Definition: gtest-internal.h:1153
Definition: gtest-internal.h:156
Definition: gtest-port.h:1925
Definition: gmock-internal-utils_test.cc:60
GTEST_API_ const char kStackTraceMarker[]
Definition: gtest.cc:178
Definition: gtest-internal.h:238
GTEST_API_ std::string AppendUserMessage(const std::string &gtest_msg, const Message &user_msg)
Definition: gtest.cc:2018
int value
Definition: gmock-matchers_test.cc:657
Definition: gtest-internal.h:1074
char IsNotContainer
Definition: gtest-internal.h:940
Bits fraction_bits() const
Definition: gtest-internal.h:316
int x
Definition: gmock-matchers_test.cc:3610
#define GTEST_INTERNAL_DEPRECATED(message)
Definition: gtest-port.h:2289
Definition: gtest-port.h:1935
GTEST_API_ std::string DiffStrings(const std::string &left, const std::string &right, size_t *total_line_count)
TestFactoryBase()
Definition: gtest-internal.h:449
GTEST_API_ AssertionResult EqFailure(const char *expected_expression, const char *actual_expression, const std::string &expected_value, const std::string &actual_value, bool ignoring_case)
Definition: gtest.cc:1326
const Bits & bits() const
Definition: gtest-internal.h:310
type
Definition: upload.py:443
GTEST_API_ std::string GetBoolAssertionFailureMessage(const AssertionResult &assertion_result, const char *expression_text, const char *actual_predicate_value, const char *expected_predicate_value)
Definition: gtest.cc:1361
GTEST_API_ std::string CreateUnifiedDiff(const std::vector< std::string > &left, const std::vector< std::string > &right, size_t context=2)
Definition: gtest.cc:1216
static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char *filename, int line_num)
Definition: gtest-internal.h:509
void Abort()
Definition: gtest-port.h:2133
TypeWithSize< sizeof(RawType)>::UInt Bits
Definition: gtest-internal.h:242
const
Definition: upload.py:398
Definition: gtest-internal.h:900
Definition: gtest-internal.h:1075
const_iterator end() const
Definition: gtest-internal.h:1116
#define GTEST_DISALLOW_COPY_AND_ASSIGN_(type)
Definition: gtest-port.h:688
FlatTuple(T...t)
Definition: gtest-internal.h:1244
ConstCharPtr(const char *str)
Definition: gtest-internal.h:823
Definition: gtest-internal.h:408
void(*)( SetUpTestSuiteFunc)
Definition: gtest-internal.h:477
Iter ArrayAwareFind(Iter begin, Iter end, const Element &elem)
Definition: gtest-internal.h:1035
Random(UInt32 seed)
Definition: gtest-internal.h:837
Definition: gtest-internal.h:1200
Definition: gtest-internal.h:992
decltype(*std::declval< typename C::const_iterator >()) value_type
Definition: gtest-internal.h:978
const ElemFromList< I, Indices, T... >::type & Get() const
Definition: gtest-internal.h:1247
bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N])
Definition: gtest-internal.h:1016
size_t size() const
Definition: gtest-internal.h:1114
std::string StripTrailingSpaces(std::string str)
Definition: gtest-port.h:2007
static bool dummy_
Definition: gtest-internal.h:413
#define GTEST_REMOVE_REFERENCE_AND_CONST_(T)
Definition: gtest-internal.h:894
Definition: gtest-internal.h:876
Definition: gtest-internal.h:1203
~NativeArray()
Definition: gtest-internal.h:1108
Definition: gtest-internal.h:1183
Definition: gtest.h:682
value_type value
Definition: gtest-internal.h:1212
bool is_nan() const
Definition: gtest-internal.h:322
std::string file
Definition: gtest-internal.h:484
Definition: gtest-internal.h:110