- 3.0.2 Documentation
Box-constrained nonlinear Optimal Control

In this example, we show how to set up a box-constrained variation of the nonlinear optimal control solver from the previous example.

Note
This example requires the HPIPM solver to be installed.
#include "exampleDir.h"
using namespace ct::core;
using namespace ct::optcon;
int main(int argc, char** argv)
{
/*get the state and control input dimension of the oscillator. Since we're dealing with a simple oscillator,
the state and control dimensions will be state_dim = 2, and control_dim = 1. */
const size_t state_dim = ct::core::SecondOrderSystem::STATE_DIM;
const size_t control_dim = ct::core::SecondOrderSystem::CONTROL_DIM;
/* STEP 1: set up the Nonlinear Optimal Control Problem
* First of all, we need to create instances of the system dynamics, the linearized system and the cost function. */
/* STEP 1-A: create a instance of the oscillator dynamics for the optimal control problem.
* Please also compare the documentation of SecondOrderSystem.h */
double w_n = 0.1;
double zeta = 5.0;
std::shared_ptr<ct::core::ControlledSystem<state_dim, control_dim>> oscillatorDynamics(
new ct::core::SecondOrderSystem(w_n, zeta));
/* STEP 1-B: Although the first order derivatives of the oscillator are easy to derive, let's illustrate the use of the System Linearizer,
* which performs numerical differentiation by the finite-difference method. The system linearizer simply takes the
* the system dynamics as argument. Alternatively, you could implement your own first-order derivatives by overloading the class LinearSystem.h */
std::shared_ptr<ct::core::SystemLinearizer<state_dim, control_dim>> adLinearizer(
/* STEP 1-C: create a cost function. We have pre-specified the cost-function weights for this problem in "nlocCost.info".
* Here, we show how to create terms for intermediate and final cost and how to automatically load them from the configuration file.
* The verbose option allows to print information about the loaded terms on the terminal. */
std::shared_ptr<ct::optcon::TermQuadratic<state_dim, control_dim>> intermediateCost(
std::shared_ptr<ct::optcon::TermQuadratic<state_dim, control_dim>> finalCost(
bool verbose = true;
intermediateCost->loadConfigFile(ct::optcon::exampleDir + "/nlocCost.info", "intermediateCost", verbose);
finalCost->loadConfigFile(ct::optcon::exampleDir + "/nlocCost.info", "finalCost", verbose);
// Since we are using quadratic cost function terms in this example, the first and second order derivatives are immediately known and we
// define the cost function to be an "Analytical Cost Function". Let's create the corresponding object and add the previously loaded
// intermediate and final term.
std::shared_ptr<CostFunctionQuadratic<state_dim, control_dim>> costFunction(
costFunction->addIntermediateTerm(intermediateCost);
costFunction->addFinalTerm(finalCost);
/* STEP 1-D: set up the box constraints for the control input*/
// input box constraint boundaries with sparsities in constraint toolbox format
Eigen::VectorXi sp_control(control_dim);
sp_control << 1;
Eigen::VectorXd u_lb(control_dim);
Eigen::VectorXd u_ub(control_dim);
u_lb.setConstant(-0.5);
u_ub = -u_lb;
// constraint terms
std::shared_ptr<ControlInputConstraint<state_dim, control_dim>> controlInputBound(
new ControlInputConstraint<state_dim, control_dim>(u_lb, u_ub, sp_control));
controlInputBound->setName("ControlInputBound");
// input box constraint constraint container
std::shared_ptr<ConstraintContainerAnalytical<state_dim, control_dim>> inputBoxConstraints(
// add and initialize constraint terms
inputBoxConstraints->addIntermediateConstraint(controlInputBound, verbose);
inputBoxConstraints->initialize();
/* STEP 1-E: set up the box constraints for the states */
// state box constraint boundaries with sparsities in constraint toolbox format
// we put a box constraint on the velocity, hence the overall constraint dimension is 1.
Eigen::VectorXi sp_state(state_dim);
sp_state << 0, 1;
Eigen::VectorXd x_lb(1);
Eigen::VectorXd x_ub(1);
x_lb.setConstant(-0.2);
x_ub = -x_lb;
// constraint terms
std::shared_ptr<StateConstraint<state_dim, control_dim>> stateBound(
new StateConstraint<state_dim, control_dim>(x_lb, x_ub, sp_state));
stateBound->setName("StateBound");
// input box constraint constraint container
std::shared_ptr<ConstraintContainerAnalytical<state_dim, control_dim>> stateBoxConstraints(
// add and initialize constraint terms
stateBoxConstraints->addIntermediateConstraint(stateBound, verbose);
stateBoxConstraints->initialize();
/* STEP 1-F: initialization with initial state and desired time horizon */
x0.setZero(); // in this example, we choose a zero initial state
ct::core::Time timeHorizon = 3.0; // and a final time horizon in [sec]
// STEP 1-G: create and initialize an "optimal control problem"
timeHorizon, x0, oscillatorDynamics, costFunction, adLinearizer);
// add the box constraints to the optimal control problem
optConProblem.setInputBoxConstraints(inputBoxConstraints);
optConProblem.setStateBoxConstraints(stateBoxConstraints);
/* STEP 2: set up a nonlinear optimal control solver. */
/* STEP 2-A: Create the settings.
* the type of solver, and most parameters, like number of shooting intervals, etc.,
* can be chosen using the following settings struct. Let's use, the iterative
* linear quadratic regulator, iLQR, for this example. In the following, we
* modify only a few settings, for more detail, check out the NLOptConSettings class. */
NLOptConSettings ilqr_settings;
ilqr_settings.dt = 0.01; // the control discretization in [sec]
ilqr_settings.integrator = ct::core::IntegrationType::EULERCT;
ilqr_settings.discretization = NLOptConSettings::APPROXIMATION::FORWARD_EULER;
ilqr_settings.max_iterations = 10;
ilqr_settings.nThreads = 1;
ilqr_settings.nlocp_algorithm = NLOptConSettings::NLOCP_ALGORITHM::GNMS;
ilqr_settings.lqocp_solver = NLOptConSettings::LQOCP_SOLVER::HPIPM_SOLVER; // solve LQ-problems using HPIPM
ilqr_settings.lqoc_solver_settings.num_lqoc_iterations = 10; // number of riccati sub-iterations
ilqr_settings.printSummary = true;
/* STEP 2-B: provide an initial guess */
// calculate the number of time steps K
size_t K = ilqr_settings.computeK(timeHorizon);
/* design trivial initial controller for iLQR. Note that in this simple example,
* we can simply use zero feedforward with zero feedback gains around the initial position.
* In more complex examples, a more elaborate initial guess may be required.*/
StateVectorArray<state_dim> x_ref_init(K + 1, x0);
NLOptConSolver<state_dim, control_dim>::Policy_t initController(x_ref_init, u0_ff, u0_fb, ilqr_settings.dt);
// STEP 2-C: create an NLOptConSolver instance
NLOptConSolver<state_dim, control_dim> iLQR(optConProblem, ilqr_settings);
// set the initial guess
iLQR.setInitialGuess(initController);
// STEP 3: solve the optimal control problem
iLQR.solve();
// STEP 4: retrieve the solution
// let's plot the output
plotResultsOscillator<state_dim, control_dim>(solution.x_ref(), solution.uff(), solution.time());
}

You can run this example with the following command

rosrun ct_optcon ex_NLOC_boxConstrained