- 3.0.1 core module.
ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR > Class Template Reference

Computes the linearization of a general non-linear DiscreteControlledSystem using Automatic Differentiation with code generation. More...

#include <DiscreteSystemLinearizerADCG.h>

Inheritance diagram for ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >:
ct::core::DiscreteLinearSystem< STATE_DIM, CONTROL_DIM, SCALAR > ct::core::DiscreteControlledSystem< STATE_DIM, CONTROL_DIM, SCALAR > ct::core::DiscreteSystem< STATE_DIM, CONTROL_DIM, SCALAR >

Public Types

typedef CppAD::AD< CppAD::cg::CG< SCALAR > > ADCGScalar
 Autodiff codegen type. More...
 
typedef DiscreteControlledSystem< STATE_DIM, CONTROL_DIM, ADCGScalarsystem_t
 type of system to be linearized More...
 
typedef DynamicsLinearizerADCG< STATE_DIM, CONTROL_DIM, ADCGScalar, int > linearizer_t
 type of linearizer to be used More...
 
typedef Base::state_vector_t state_vector_t
 state vector type More...
 
typedef Base::control_vector_t control_vector_t
 control vector type More...
 
typedef Base::state_matrix_t state_matrix_t
 state Jacobian type (A) More...
 
typedef Base::state_control_matrix_t state_control_matrix_t
 
- Public Types inherited from ct::core::DiscreteLinearSystem< STATE_DIM, CONTROL_DIM, SCALAR >
typedef Base::time_t time_t
 
typedef Base::state_vector_t state_vector_t
 
typedef Base::control_vector_t control_vector_t
 
typedef StateMatrix< STATE_DIM, SCALARstate_matrix_t
 state Jacobian type More...
 
typedef StateControlMatrix< STATE_DIM, CONTROL_DIM, SCALARstate_control_matrix_t
 input Jacobian type More...
 
- Public Types inherited from ct::core::DiscreteControlledSystem< STATE_DIM, CONTROL_DIM, SCALAR >
typedef DiscreteSystem< STATE_DIM, CONTROL_DIM, SCALARBase
 
typedef Base::state_vector_t state_vector_t
 
typedef Base::control_vector_t control_vector_t
 
typedef Base::time_t time_t
 
- Public Types inherited from ct::core::DiscreteSystem< STATE_DIM, CONTROL_DIM, SCALAR >
typedef int time_t
 the type of the time variable More...
 
typedef StateVector< STATE_DIM, SCALARstate_vector_t
 
typedef ControlVector< CONTROL_DIM, SCALARcontrol_vector_t
 

Public Member Functions

 DiscreteSystemLinearizerADCG (std::shared_ptr< system_t > nonlinearSystem, bool cacheJac=true)
 control Jacobian type (B) More...
 
 DiscreteSystemLinearizerADCG (const DiscreteSystemLinearizerADCG &arg)
 copy constructor More...
 
virtual ~DiscreteSystemLinearizerADCG ()
 destructor More...
 
DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR > * clone () const override
 deep cloning More...
 
const state_matrix_tgetDerivativeState (const state_vector_t &x, const control_vector_t &u, const int t=0)
 get the Jacobian with respect to the state More...
 
const state_control_matrix_tgetDerivativeControl (const state_vector_t &x, const control_vector_t &u, const int t=0)
 get the Jacobian with respect to the input More...
 
void getAandB (const state_vector_t &x, const control_vector_t &u, const state_vector_t &x_next, const int n, size_t numSteps, state_matrix_t &A, state_control_matrix_t &B) override
 retrieve discrete-time linear system matrices A and B. More...
 
void compileJIT (const std::string &libName="DiscreteSystemLinearizerADCG")
 compile just-in-time More...
 
void generateCode (const std::string &systemName, const std::string &outputDir=ct::core::CODEGEN_OUTPUT_DIR, const std::string &templateDir=ct::core::CODEGEN_TEMPLATE_DIR, const std::string &ns1="core", const std::string &ns2="generated", bool useReverse=false, bool ignoreZero=true)
 generates source code and saves it to file More...
 
const linearizer_tgetLinearizer () const
 accessor to the linearizer, e.g. for testing More...
 
- Public Member Functions inherited from ct::core::DiscreteLinearSystem< STATE_DIM, CONTROL_DIM, SCALAR >
 DiscreteLinearSystem (const ct::core::SYSTEM_TYPE &type=ct::core::SYSTEM_TYPE::GENERAL)
 default constructor More...
 
virtual ~DiscreteLinearSystem ()
 destructor More...
 
virtual void propagateControlledDynamics (const state_vector_t &state, const time_t n, const control_vector_t &control, state_vector_t &stateNext) override
 compute the system dynamics More...
 
void getAandB (const state_vector_t &x, const control_vector_t &u, const int n, state_matrix_t &A, state_control_matrix_t &B)
 
- Public Member Functions inherited from ct::core::DiscreteControlledSystem< STATE_DIM, CONTROL_DIM, SCALAR >
 DiscreteControlledSystem (const SYSTEM_TYPE &type=SYSTEM_TYPE::GENERAL)
 default constructor More...
 
 DiscreteControlledSystem (std::shared_ptr< DiscreteController< STATE_DIM, CONTROL_DIM, SCALAR >> controller, const SYSTEM_TYPE &type=SYSTEM_TYPE::GENERAL)
 constructor More...
 
 DiscreteControlledSystem (const ControlledSystem< STATE_DIM, CONTROL_DIM, SCALAR > &arg)
 copy constructor More...
 
virtual ~DiscreteControlledSystem ()=default
 destructor More...
 
void setController (const std::shared_ptr< DiscreteController< STATE_DIM, CONTROL_DIM, SCALAR >> &controller)
 set a new controller More...
 
void getController (std::shared_ptr< DiscreteController< STATE_DIM, CONTROL_DIM, SCALAR >> &controller) const
 get the controller instance More...
 
std::shared_ptr< DiscreteController< STATE_DIM, CONTROL_DIM, SCALAR > > getController ()
 get the controller instace More...
 
virtual void propagateDynamics (const state_vector_t &state, const time_t n, state_vector_t &stateNext) override
 propagates the system dynamics forward by one step More...
 
- Public Member Functions inherited from ct::core::DiscreteSystem< STATE_DIM, CONTROL_DIM, SCALAR >
 DiscreteSystem (const SYSTEM_TYPE &type=GENERAL)
 constructor More...
 
virtual ~DiscreteSystem ()
 desctructor More...
 
virtual void propagateDynamics (const StateVector< STATE_DIM, SCALAR > &state, const time_t n, StateVector< STATE_DIM, SCALAR > &stateNext)=0
 propagates the system dynamics forward by one step More...
 
SYSTEM_TYPE getType () const
 get the type of system More...
 

Public Attributes

EIGEN_MAKE_ALIGNED_OPERATOR_NEW typedef DiscreteLinearSystem< STATE_DIM, CONTROL_DIM, SCALARBase
 
- Public Attributes inherited from ct::core::DiscreteLinearSystem< STATE_DIM, CONTROL_DIM, SCALAR >
EIGEN_MAKE_ALIGNED_OPERATOR_NEW typedef DiscreteControlledSystem< STATE_DIM, CONTROL_DIM, SCALARBase
 
- Public Attributes inherited from ct::core::DiscreteControlledSystem< STATE_DIM, CONTROL_DIM, SCALAR >
EIGEN_MAKE_ALIGNED_OPERATOR_NEW typedef std::shared_ptr< DiscreteControlledSystem< STATE_DIM, CONTROL_DIM, SCALAR > > Ptr
 

Protected Attributes

state_matrix_t dFdx_
 state Jacobian More...
 
state_control_matrix_t dFdu_
 input Jacobian More...
 
bool cacheJac_
 flag if Jacobian will be cached More...
 
std::shared_ptr< system_tnonlinearSystem_
 instance of non-linear system More...
 
linearizer_t linearizer_
 instance of ad-linearizer More...
 
- Protected Attributes inherited from ct::core::DiscreteControlledSystem< STATE_DIM, CONTROL_DIM, SCALAR >
std::shared_ptr< DiscreteController< STATE_DIM, CONTROL_DIM, SCALAR > > controller_
 the controller instance More...
 
- Protected Attributes inherited from ct::core::DiscreteSystem< STATE_DIM, CONTROL_DIM, SCALAR >
SYSTEM_TYPE type_
 type of system More...
 

Detailed Description

template<size_t STATE_DIM, size_t CONTROL_DIM, typename SCALAR = double>
class ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >

Computes the linearization of a general non-linear DiscreteControlledSystem using Automatic Differentiation with code generation.

This class takes a non-linear DiscreteControlledSystem $ x[n+1] = f(x[n],u[n],n) $ and computes the linearization around a certain point $ x = x_s $, $ u = u_s $.

\[ x[n+1] = A x[n] + B u[n] \]

where

\[ \begin{aligned} A &= \frac{df}{dx} |_{x=x_s, u=u_s} \\ B &= \frac{df}{du} |_{x=x_s, u=u_s} \end{aligned} \]

Note
This is generally the most efficient and most accurate way to generate the linearization of system dynamics.

Unit test AutoDiffLinearizerTest.cpp illustrates the use of this class.

Warning
You should ensure that your DiscreteControlledSystem is templated on the scalar type and does not contain branching (if/else statements, switch cases etc.)

The linearization is computed using Auto Differentiation which is then used by a code generator framework to generate efficient code. For convenience just-in-time compilation is provided. However, you can also generate source code directly.

Warning
Depending on the complexity of your system, just-in-time compilation (compileJIT()) can be slow. In that case generate a source code file
Template Parameters
STATE_DIMdimension of state vector
CONTROL_DIMdimension of control vector
SCALARprimitive type of resultant linear system

Member Typedef Documentation

template<size_t STATE_DIM, size_t CONTROL_DIM, typename SCALAR = double>
typedef CppAD::AD<CppAD::cg::CG<SCALAR> > ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::ADCGScalar

Autodiff codegen type.

template<size_t STATE_DIM, size_t CONTROL_DIM, typename SCALAR = double>
typedef DiscreteControlledSystem<STATE_DIM, CONTROL_DIM, ADCGScalar> ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::system_t

type of system to be linearized

template<size_t STATE_DIM, size_t CONTROL_DIM, typename SCALAR = double>
typedef DynamicsLinearizerADCG<STATE_DIM, CONTROL_DIM, ADCGScalar, int> ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::linearizer_t

type of linearizer to be used

template<size_t STATE_DIM, size_t CONTROL_DIM, typename SCALAR = double>
typedef Base::state_vector_t ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::state_vector_t

state vector type

template<size_t STATE_DIM, size_t CONTROL_DIM, typename SCALAR = double>
typedef Base::control_vector_t ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::control_vector_t

control vector type

template<size_t STATE_DIM, size_t CONTROL_DIM, typename SCALAR = double>
typedef Base::state_matrix_t ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::state_matrix_t

state Jacobian type (A)

template<size_t STATE_DIM, size_t CONTROL_DIM, typename SCALAR = double>
typedef Base::state_control_matrix_t ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::state_control_matrix_t

Constructor & Destructor Documentation

template<size_t STATE_DIM, size_t CONTROL_DIM, typename SCALAR = double>
ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::DiscreteSystemLinearizerADCG ( std::shared_ptr< system_t nonlinearSystem,
bool  cacheJac = true 
)
inline

control Jacobian type (B)

default constructor

Parameters
nonlinearSystemnon-linear system instance to linearize
template<size_t STATE_DIM, size_t CONTROL_DIM, typename SCALAR = double>
ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::DiscreteSystemLinearizerADCG ( const DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR > &  arg)
inline

copy constructor

template<size_t STATE_DIM, size_t CONTROL_DIM, typename SCALAR = double>
virtual ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::~DiscreteSystemLinearizerADCG ( )
inlinevirtual

destructor

Member Function Documentation

template<size_t STATE_DIM, size_t CONTROL_DIM, typename SCALAR = double>
DiscreteSystemLinearizerADCG<STATE_DIM, CONTROL_DIM, SCALAR>* ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::clone ( ) const
inlineoverridevirtual
template<size_t STATE_DIM, size_t CONTROL_DIM, typename SCALAR = double>
const state_matrix_t& ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::getDerivativeState ( const state_vector_t x,
const control_vector_t u,
const int  t = 0 
)
inline

get the Jacobian with respect to the state

This computes the linearization of the system with respect to the state at a given point $ x=x_s $, $ u=u_s $, i.e. it computes

\[ A = \frac{df}{dx} |_{x=x_s, u=u_s} \]

Parameters
xstate to linearize at
ucontrol to linearize at
ttime
Returns
Jacobian wrt state

References ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::dFdx_, ct::core::DynamicsLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR, TIME >::getDerivativeState(), ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::linearizer_, and t.

template<size_t STATE_DIM, size_t CONTROL_DIM, typename SCALAR = double>
const state_control_matrix_t& ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::getDerivativeControl ( const state_vector_t x,
const control_vector_t u,
const int  t = 0 
)
inline

get the Jacobian with respect to the input

This computes the linearization of the system with respect to the input at a given point $ x=x_s $, $ u=u_s $, i.e. it computes

\[ B = \frac{df}{du} |_{x=x_s, u=u_s} \]

Parameters
xstate to linearize at
ucontrol to linearize at
ttime
Returns
Jacobian wrt input

References ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::dFdu_, ct::core::DynamicsLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR, TIME >::getDerivativeControl(), ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::linearizer_, and t.

template<size_t STATE_DIM, size_t CONTROL_DIM, typename SCALAR = double>
void ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::getAandB ( const state_vector_t x,
const control_vector_t u,
const state_vector_t x_next,
const int  n,
size_t  numSteps,
state_matrix_t A,
state_control_matrix_t B 
)
inlineoverridevirtual

retrieve discrete-time linear system matrices A and B.

This computes matrices A and B such that

\[ x_{n+1} = Ax_n + Bu_n \]

Note that the inputs x_next and subSteps are being ignored

Parameters
xthe state setpoint at n
uthe control setpoint at n
nthe time setpoint
x_next-> ignored
subSteps-> ignored
Athe resulting linear system matrix A
Bthe resulting linear system matrix B

Implements ct::core::DiscreteLinearSystem< STATE_DIM, CONTROL_DIM, SCALAR >.

References ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::dFdu_, ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::dFdx_, ct::core::DynamicsLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR, TIME >::getDerivativeControl(), ct::core::DynamicsLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR, TIME >::getDerivativeState(), and ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::linearizer_.

template<size_t STATE_DIM, size_t CONTROL_DIM, typename SCALAR = double>
void ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::compileJIT ( const std::string &  libName = "DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >")
inline

compile just-in-time

Generates the source code, compiles it and dynamically loads the resulting library.

Note
If this function takes a long time, consider generating the source code using generateCode() and compile it before runtime.

References ct::core::DynamicsLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR, TIME >::compileJIT(), and ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::linearizer_.

template<size_t STATE_DIM, size_t CONTROL_DIM, typename SCALAR = double>
void ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::generateCode ( const std::string &  systemName,
const std::string &  outputDir = ct::core::CODEGEN_OUTPUT_DIR,
const std::string &  templateDir = ct::core::CODEGEN_TEMPLATE_DIR,
const std::string &  ns1 = "core",
const std::string &  ns2 = "generated",
bool  useReverse = false,
bool  ignoreZero = true 
)
inline

generates source code and saves it to file

This generates source code for computing the system linearization and saves it to file. This function uses a template file in which it replaces two placeholders, each identified as the string "AUTOGENERATED_CODE_PLACEHOLDER"

Parameters
systemNamename of the resulting LinearSystem class
outputDiroutput directory
templateDirdirectory of the template file
ns1first layer namespace
ns2second layer namespace
useReverseif true, uses Auto-Diff reverse mode
ignoreZeroif true, zero entries are not assigned zero

References ct::core::DynamicsLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR, TIME >::generateCode(), and ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::linearizer_.

Member Data Documentation

template<size_t STATE_DIM, size_t CONTROL_DIM, typename SCALAR = double>
EIGEN_MAKE_ALIGNED_OPERATOR_NEW typedef DiscreteLinearSystem<STATE_DIM, CONTROL_DIM, SCALAR> ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::Base
template<size_t STATE_DIM, size_t CONTROL_DIM, typename SCALAR = double>
state_matrix_t ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::dFdx_
protected
template<size_t STATE_DIM, size_t CONTROL_DIM, typename SCALAR = double>
bool ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::cacheJac_
protected

flag if Jacobian will be cached

template<size_t STATE_DIM, size_t CONTROL_DIM, typename SCALAR = double>
std::shared_ptr<system_t> ct::core::DiscreteSystemLinearizerADCG< STATE_DIM, CONTROL_DIM, SCALAR >::nonlinearSystem_
protected

instance of non-linear system


The documentation for this class was generated from the following file: